Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises

نویسندگان

  • Yuanbiao Hu
  • Baolin Liu
  • Qin Zhou
  • Chun Yang
چکیده

Many control algorithms are based on the mathematical models of dynamic systems. System identification is used to determine the structures and parameters of dynamic systems. Some identification algorithms (e.g., the least squares algorithm) can be applied to estimate the parameters of linear regressive systems or linear-parameter systems with white noise disturbances. This paper derives two recursive extended least squares parameter estimation algorithms for Wiener nonlinear systems with moving average noises based on over-parameterization models. The simulation results indicate that the proposed algorithms are effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative and recursive least squares estimation algorithms for moving average systems

An iterative least squares algorithm and a recursive least squares algorithms are developed for estimating the parameters of moving average systems. The key is use the least squares principle and to replace the unmeasurable noise terms in the information vector. The steps and flowcharts of computing the parameter estimates are given. The simulation results validate that the proposed algorithms ...

متن کامل

Gradient-Based Iterative Identification for Wiener Nonlinear Dynamic Systems with Moving Average Noises

This paper focuses on the parameter identification problem for Wiener nonlinear dynamic systems with moving average noises. In order to improve the convergence rate, the gradient-based iterative algorithm is presented by replacing the unmeasurable variables with their corresponding iterative estimates, and to compute iteratively the noise estimates based on the obtained parameter estimates. The...

متن کامل

Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems

An extended stochastic gradient algorithm is developed to estimate the parameters of Hammerstein–Wiener ARMAX models. The basic idea is to replace the unmeasurable noise terms in the information vector of the pseudo-linear regression identification model with the corresponding noise estimates which are computed by the obtained parameter estimates. The obtained parameter estimates of the identif...

متن کامل

Recursive Identification of Systems with Noninvertible Output Nonlinearities

The paper deals with the recursive identification of dynamic systems having noninvertible output characteristics, which can be represented by the Wiener model. A special form of the model is considered where the linear dynamic block is given by its transfer function and the nonlinear static block is characterized by such a description of the piecewise-linear characteristic, which is appropriate...

متن کامل

State and Parametric Estimation of Nonlinear Systems Described by Wiener Sate- Space Mathematical Models

This chapter deals with the description, the parametric estimation, the state estimation, and the parametric and state estimation conjointly of nonlinear systems. The focus is on the class of nonlinear systems, which are described by Wiener state-space discrete-time mathematical models. Thus, the authors develop a new recursive parametric estimation algorithm, which is based on least squares te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CSSP

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2014